Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified γ-Secretase Complexes

نویسندگان

  • Matthias Cacquevel
  • Lorène Aeschbach
  • Jemila Houacine
  • Patrick C. Fraering
چکیده

BACKGROUND Mutations linked to early onset, familial forms of Alzheimer's disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1-42/Aβ1-40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1-42 production, decreasing Aβ1-40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q. METHODOLOGY/PRINCIPAL FINDINGS We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1-40, Aβ1-42 and APP intracellular domain productions in vitro. CONCLUSION/SIGNIFICANCE Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1-42/Aβ1-40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More than a FAD: The In Vivo Effects of Disease-Linked Presenilin-1 Mutations

Mutations in presenilins are linked to familial autosomal dominant Alzheimer's disease. In this issue of Neuron, Xia et al. (2015) show that a disease-linked mutation leads to loss of γ-secretase function, cognitive decline, and neurodegeneration when knocked into the mouse genome.

متن کامل

Dominant negative effect of the loss-of-function γ-secretase mutants on the wild-type enzyme through heterooligomerization

γ-secretase is an intramembrane protease complex consisting of nicastrin, presenilin-1/2, APH-1a/b, and Pen-2. Hydrolysis of the 99-residue transmembrane fragment of amyloid precursor protein (APP-C99) by γ-secretase produces β-amyloid (Aβ) peptides. Pathogenic mutations in PSEN1 and PSEN2, which encode the catalytic subunit presenilin-1/2 of γ-secretase, lead to familial Alzheimer's disease in...

متن کامل

Dominant negative mechanism of Presenilin-1 mutations in FAD.

Alzheimer’s disease (AD) is the most common form of dementia, afflicting more than 5 million people in the United States alone. Mutations in the Presenilin genes (PSEN1 and PSEN2) are highly penetrant and account for ∼90% of all mutations identified in familial AD (FAD), highlighting their importance in the pathogenesis of AD. The presenilin proteins (PS1 and PS2) are broadly expressed and serv...

متن کامل

Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations.

The amyloid β-peptide (Aβ), strongly implicated in the pathogenesis of Alzheimer's disease (AD), is produced from the amyloid β-protein precursor (APP) through consecutive proteolysis by β- and γ-secretases. The latter protease contains presenilin as the catalytic component of a membrane-embedded aspartyl protease complex. Missense mutations in presenilin are associated with early-onset familia...

متن کامل

Loss of presenilin function is associated with a selective gain of APP function

Presenilin 1 (PS1) is an essential γ-secretase component, the enzyme responsible for amyloid precursor protein (APP) intramembraneous cleavage. Mutations in PS1 lead to dominant-inheritance of early-onset familial Alzheimer's disease (FAD). Although expression of FAD-linked PS1 mutations enhances toxic Aβ production, the importance of other APP metabolites and γ-secretase substrates in the etio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012